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Abstract

In this lecture we will develop the theory of identification of ag-
gregated Markov models for single molecule kinnetics.

1 Introduction

The theory of aggregated Markov models as developed by Colquhoun and
others has been used to model ion channels since soon after Sakmann and
Neher invented the patch-clamp recording. The essential prediction of the
theory is that the dwell-time distributions are sums of decaying exponentials.
Considerable effort has gone into extracting kinetic gating mechanisms from
the statistics of patch-clamp recordings. There are two primary computer
programs written for this task; HJCFIT, developed at the Colquhoun lab,
and QUB developed at the Sachs lab. Considerable time and expertise has
gone into the development of these codes.

We will formulate the theory of aggregated binary Markov models in
which we stress the notion of probability flux. This formulation is mathe-
matically equivalent to the standard formulation as developed by Colquhoun
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Figure 1: (a) (s)The patchclamp was invented by Neher and Sakmann in the mid 1970’s.
With it they were able to observe the first current traces from single ion channels. (b)
The two time series are from single molecules. The upper trace is an ion channel current
trace. The lower one is the fluorescense signal emitted by an intermediate of the reaction
catalyzed by a single molecule of the enzyme cholesterol oxidase (by groups at Harvard
and Pacific Northwest National Lab [9]).(c)The statistics of these signals are analyzed in
terms of “dwell time” distributions. (d)From the statistics of the signals researchers try to
reconstruct the transition diagram that the protein undergoes as the molecule undergoes
it’s stochastic time dynamics.

and others [1, 2, 3, 4, 5, 6, 7, 8] but the physical content of the theory is
highlighted.

We use our formulation to derive new results on modal gating, latency
distributions, and on multimeric channels with identical indpendent subunits.
We develop a fairly complete theory of the models with identical independent
subunits. Including e We also discuss identifiability of Markov models in
light of ligand dependence. Throughout, we stress the concept of detailed
balance, or microscopic reversibility. We will show how to calculate the
ligand dependence of the equilibrium open and closed probabilities and of
the mean open and closed times by inspection when detailed balance holds.
Similar results can also be obtained when detailed balance doesn’t hold, but
they are slightly more difficult. We also will derive some old results in a new
way that is simpler and more intuitive. There is some pleasure in seeing old
results in a new light. For example we will show that the higher dimensional
distribution functions contain no additional information beyond the two-
dimensional ones. Our derivation of this result is short and transparent
compared to Fredkin et al’s original derivation [4]. We will also show when
detailed balance is satisfied the coefficients of the decaying exponential in
the one-dimensional dwell-time distributions are positive. Our derivation of
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this result is short and transparent compared to Kijima and Kijima’s original
derivation [5].

2 Background

We consider binary Markov chains in which there are N states. Of these
states, NO are denoted “O” (open) and NC are denoted “C” (closed). We
assume current flows through the channel when it is in one of the open states
and that it passes no current when it is in one of the closed states. We assume
that the transitions from open to closed and vice versa are instantaneous. The
current takes on only two values, 0, and 1, say, with no intermediate values.
Although real channels are more complex than this, with the baseline current
drifting, the binary assumption is still a reasonable first approximation to the
observed dynamics.

2.1 The Master Equation and Transition Rates

We assume that the channel switches randomly between states with exponen-
tially distributed waiting times. The probability p(t) = (p1(t), p2(t), . . . pN(t))
for being in the various states evolves according to the “master equation”

dp

dt
= pQ (1)

with solution p(t) = po exp(Qt). po is the vector of initial probabilities and
Q is called the “generator matrix” with Qij giving the probability per unit
time of making a transition from state i to state j. The diagonal elements
satisfy Qii = −

∑
j 6=i Qij which is a statement of conservation of probability.

A convenient way to see this is to denote a column vector containing all
ones by u. Then we have dp/dt u = pQu = 0. Multiplication of a row
vector on the right by u is an “inner product” that corresponds to summing
the components of the row vector. We denote the vector of equilibrium
probabilities peq:

peqQ = 0 . (2)

We also have
Qu = 0 (3)
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These probabilities must sum to 1 so that pequ = 1. Normalization of the
initial probabilties is written the same way: pou = 1. Because we are going
to consider binary Markov chains we partition Q:

Q =

(
QOO QOC

QCO QCC

)
(4)

where QOO describes the open to open transitions, QOC the open to closed
transitions, etc. We also partition the equilibrium probability peq and the
initial probabilities accordingly:

peq = (peq
O , peq

C ) (5)

po = (pOo, pCo) (6)

and similarly

u =

(
uO

uC

)
. (7)

Combining equations 2-7 yields:

QCOuO + QCCuC = 0

QOCuC + QOOuO = 0

peq
C QCC + peq

O QOC = 0

peq
O QOO + peq

C QCO = 0 (8)

which we shall refer to collectively as the “null vector” equations.
The key statistical distributions are the open and closed dwell-time distri-

butions. The open time distribution is the probability density for a channel
that opened at time 0 to close for the first time at time tO. The open time
distribution is solved by assuming that the channel is initially open but that
once closed it stays closed. Then the probability that the channel is in any
of the open states is a decreasing function of time. The probability that the
channel first closed at time tO is given by

dpO

dt
= pOQOO (9)

which has solution pO(tO) = p0o exp(QOOtO). The probability, FO, that the
channel remains open at time tO is the sum of the probability over all the
open states:

FO(tO) = pOo exp(QOOtO)uO (10)
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where we’ve used the fact that multiplication on the right by an “all ones”
vector is a summation. (Multiplication on the left by uT , oruT

CoruT
O is also a

summation.) The probability, GC , that the channel closes for the first time
at time tO is GC(tO) = 1 − FO(tO). The open-time distribution fO(tO) is
defined by: ∫ tO

0

fO(t)dt = GC(tO) (11)

or fO(tO) = dGC(tO)/dtO so that

fO(tO) = −pOo exp(QOOtO)QOOuO (12)

which can be combined with the null vector equations to yield:

fO(tO) = pOo exp(QOOtO)QOCuC . (13)

The closed time distribution is similar.

fC(tC) = pCo exp(QCCtC)QCOuO . (14)

The above formulae for the open and closed time distributions are valid
for all initial probability distributions. The appropriate initial distribution
depends on the experiment. In the next subsection we discuss that initial
probabilities, pCo and pOo in detail.

2.2 The Initial Probabilities pOo and pCo

The form for the distribution function in Eq( 13) is the same for all initial
probabilities. Specifically, that formula is valid for both the equilibrium open
time distribution and for latency distributions. The only difference between
the two is the initial probability vector.

2.2.1 Latency versus equilibrium: a simple example

Here we consider the model

C0 + L
k01L−−⇀↽−−
k10

C1
k1O−−⇀↽−−
kO1

O (15)

in which the step from C0 to C1 requires ligand binding and the step from C1

to the open state is a conformation change that requires no ligand binding.
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The concentration of the ligand is denoted “L”. For this model

QCC =

(
−k01L k01L

k10 −k10 − k1O

)
. (16)

We shall consider the distribution function of closed time for two differ-
ent experiments, (1)a “ligand jump” experiment and (2)an equilibrium ex-
periment. In the ligand jump experiment the channel is in a preparation
containing no ligand until time t = 0 at which time the ligand concentra-
tion is instantaneously increased to L > 0. The time for the channel to go
open during a single experiment is called “the latency”. By performing such
an experiment repeatedly one can build up the “latency distribution” from
data. In the equilibrium experiment, the channel is exposed to ligand con-
centration L and flickers on and off. The only difference in the distribution
functions for these two cases is the initial probability vector pCo. In the lig-
and jump experiment oCo = pjump

Co = (1, 0). In the equilibrium experiment
pCo = peq

Co = (0, 1) (why?). For convenience we can write the closed time
distribution as fC(tc) = pCoSe−ΛtcΛuC where −Λ is the diagonal matrix con-
taining the eigenvalues of QCC and S is the matrix of eigenvectors of QCC

with amplitudes chosen so that Su = u. Thus the distribution function can
be written:

fC(tc) = p̃Co

(
λ+e−λ+tc

λ−e−λ−tc

)
(17)

where p̃Co = pCoS and −λ± are the eigenvalues of QCC :

λ± =
1

2
(−T ±

√
T 2 − 4∆) (18)

where T and ∆ are the trace and determinant of QCC respectively:

T = −k01L− k10 − k1O (19)

∆ = k01Lk1O . (20)

(NB: λ± are the negatives of the eigenvalues of QCC so thet are positive
numbers and with our definition above: λ+ > λ− > 0.) Thus we have:

f lat
C (tc) = (1, 0)S

(
λ+e−λ+tc

λ−e−λ−tc

)
(21)

f eq
C (tc) = (0, 1)S

(
λ+e−λ+tc

λ−e−λ−tc

)
(22)
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and S is given by:

S =

(
1 1

1 + −λ+

k01L
1 + −λ−

k01L

) (
α+ 0
0 α−

)
(23)

where (
α+

α−

)
=

(
1 1

1 + −λ+

k01L
1 + −λ−

k01L

)−1 (
1
1

)
=

1

λ+ − λ−

(
−λ−
λ+

)
(24)

so that Su = u. We have then:

f lat
C (tc) =

λ+λ−
λ+ − λ−

(e−λ−tc − e−λ+tc) (25)

f eq
C (tc) =

λ−λ+

λ+ − λ−

(
(1 +

−λ−
k01L

)e−λ−tc − (1 +
−λ+

k01L
)e−λ+tc

)
(26)

The coefficients of the decaying exponentials in f lat
C (tC) are clearly equal and

of opposite sign. The coefficients of the two decaying exponentials in f eq
C (tC)

are both positive. To see this note that (2k01L + T )2 + (T 2 − 4∆) > 0 and
(2k01L + T )2 − (T 2 − 4∆) < 0. It follows that λ+ ≥ k01L ≥ λ− so that
the amplitudes of the decaying exponentials of f eq

C (tC) are both positive. We
shall show a more general version of this result later.

2.3 Equilibrium Entry Probabilities 1

The quantities pCo and pOo are the initial (or entry) probabilities for the
various states being occupied. At equilibrium, the entry probabilities are de-
termined from the equilibrium occupancies and the flux of probability from
open to closed. Intuitively, one can understand the equilibrium entry prob-
abilities peq

Co and peq
Oo, in terms of an ensemble of current traces. We take

the ensemble and in each member of the ensemble, choose an open to closed
transition. Then (peq

Co)j is the fraction of the open-closed transitions that
resulted in the channel entering the jth closed state. Similarly (peq

Oo)i is the
fraction of the closed-open transitions that resulted in the channel entering
the ith open state. We now show how to calculate the entry probabilities in
terms of probability fluxes.
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2.3.1 Probability Flux

The most intuitive way to determine appropriate initial conditions is in terms
of probability flux. The instantaneous probability flux Jij from state i to
state j is given by the probability of being in state i pi times the transition
rate from state i to state j, kij:

Jij = kijpi . (27)

We’ll denote the total flux out of state i by: Ji =
∑

j Jij = kijpi. The
probability that the state entered state j from state i, given that it just left
state i is given by:

pij =
Jij

Ji

=
kij∑
j kij

(28)

2.3.2 Equilibrium Entry Probabilities 2

We now consider the flux from open to closed at equilibrium. The equilibrium
flux from the ith closed state to the jth open state is denoted Jij and is given
by:

Jij = (peq
C )ikij . (29)

The flux from all closed states into the ith open state is given by (peq
C QCO)i. In

vector notation the equilibrium probability flux into the various open states
is given by peq

C QCO. The total flux from closed to open, denoted J , is given
by J = peq

C QCOuO. It is easy to show that at equilibrium, the total flux from
open to closed, peq

O QOCuC , is equal to the total flux from closed to open.
That is,

J = peq
C QCOuO = peq

O QOCuC (30)

The entry probabilities for channels that just transitioned from closed to
open, peq

Oo (or open to closed peq
Co) are given by

peq
Oo =

peq
C QCO

J
(31)

peq
Co =

peq
O QOC

J
. (32)

In the example above we said that peq
Co. If you’ve understood the intuitive

notion of equilibrium entry probability it should be clear that peq
Co = (0, 1).

We show it here using Eqs(30,32. We have that QOC = (0, kOC) and J =
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peq
O QOCuC = peq

O kOC so that peq
Co =

peq
O QOC

J
=

peq
O (0,kOC)

peq
O kOC

= (0, 1) in accord with

the intuitive claim.

2.3.3 Non-Equilibrium Entry Probabilities

In the example that began this section we calculated both the equilibrium
closed time distribution function and the distribution of latencies for an ex-
periment in which the ligand concentration was zero until time t=0 at which
time it was jumped to some nonzero value. Since the model had only a
single state with no ligand bound (C0) the entry probability was given by:
plat

Co = (1, 0). More generally, in such an experiment, in which the system
is allowed to equilibrate under one condition and then jumped rapidly to
another condition the entry probability should be given by the equilibrium
occupancies for the first condition. Thus in terms of the example discussed
at the beginning of this section we see that plat

Co = peq
C (L = 0) = (1, 0).

2.4 Moments of the Equilibrium Distribution Func-
tions

We can now write an explicit formula for the dwell-time distributions in terms
of the transition matrices and the equilibrium occupancies.

fO(tO) =
1

J
peq

C QCOeQOOtOQOCuC =
1

J
peq

O QOOeQOOtOQOOuO (33)

fC(tC) =
1

J
peq

O QOCeQCCtCQCOuO =
1

J
peq

C QCCeQCCtCQCCuC (34)

The moments of the open time distribution are given by:

< τn
O >≡

∫ ∞

0

tnfO(t)dt = (−1)n+1n!peq
O Q1−n

OO uO/J . (35)

Using the null vector equations (8) it can be shown that the zeroeth moment
is unity (as it must be if the distribution functions are to be properly normal-
ized. Moreover we have the following for the important “mean open time”:

τO =
peq

O uO

J
. The quantity in the numerator, peq

O uO, is of fundamental impor-
tance. It is the equilibrium open probablity denoted by PO (PO ≡ peq

O uO).
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We also have the equilibrium closed probability PC ≡ peq
O uO so that

τO =
PO

J
(36)

τC =
PC

J
(37)

which has a simple physical interpretation. The mean open time is simply
the equilibrium open probability divided by the flux of probability from the
open states to the closed states. Note that τO + τC = 1/J .

2.4.1 Example: Latency Distribution for the linear chain

Here we consider a model of the form:

CO
k01−−⇀↽−−
k10

C1
k12−−⇀↽−−
k21

C2 . . . CN−1

k(N−1)N−−−−−⇀↽−−−−−
kN(N−1)

CN
kCO−−⇀↽−−
kOC

O (38)

We are going to consider the distribution of latencies for the channel to open
given that it began in the state C0 so that pCo = (1, 0, 0, . . . , 0, 0). For
convenience we label the elements of these vectors 0, 1, 2, . . . , N . Similarly
we label the elements of QCC as 0, 1, . . . N . We assume that N ≥ 1 so that
there are at least two closed states. We now derive a closed-form expression
for the latency distribution in terms of the decays.

QCC =



−k01 k01 0 0 . . . 0
k10 −k10 − k12 k12 0 . . . 0
0 k21 −k21 − k23 k23 . . . 0

...
0 . . . ki(i−1) −ki(i−1) − ki(i+1) ki(i+1) 0
0 . . . 0 0 kN(N−1) −kN(N−1) − kCO


(39)

Note that every row of QCC save the last one sums to zero so that the only
nonzero element of QCCuC is the last element. Since f lat(t = 0) = pCoQCCuC

and the only non-zero element of pCo is element 0 so that f lat(t = 0) = 0.
This result is quite general. A similar arguement can be used to show that
the 0th − (N − 1)th derivatives of the latency distribution are all zero:

dif lat

dti
= pCoQ

1+i
CCuC = 0 i = 0, . . . , N − 1 for the linear chain (40)
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The latency distribution distribution can be written

f lat(t) =
∑

i

αie
−λit (41)

and combined with the normalization condition
∫

f latdt = 1 and Eq(40)
to yield a system of N + 1 equations for the (N + 1) unknown amplitudes
α0, α1 . . . αN :

1 =
∑

i

αi

λi

(42)

0 =
∑

i

αi

0 =
∑

i

αiλi

0 =
∑

i

αiλ
2
i

...

0 =
∑

i

αiλ
N−1
i .

These Vandermonde equations can be inverted to yield:

αi =

∏
j λj∏N

j=1 j 6=i(λj − λi)
(43)

The result that the 0− (N − 1) derivatives of f lat(0) are all zero is valid for
more complex reaction networks. The general result is that if there are N -
links in the shortest path between the closed states that are initially occupied
to the closest open state, then the 0 − (N − 1) derivatives of f lat(0) are all
zero.

3 Identifiability

Our goal is the identification of a reaction network (as well as reaction rates)
such as that shown in Fig. 1d from experimental data. Obviously, whether
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this is possible or not depends on the nature of the data. We begin with
another example. We consider the two topologies:

I : C0

kI
01−−⇀↽−−

kI
10

C1

kI
1O−−⇀↽−−

kI
O1

O

II : C0

kII
0O−−⇀↽−−

kII
O0

O
kII

O1−−⇀↽−−
kII
1O

C1

(44)

If the data consists only of the steady-state equilibrium open-closed time-
series obtained at a single value of the rate constants, it isn’t possible to dis-
tinguish between these two topologies; for any set of rates kI

10, k
I
01, k

I
O1, k

I
1O in

the first topology, we can find a set in the second topology that will yield iden-
tical distribution functions. Indeed in the example given in “latency versus
equilibrium” subsection, we actually constructed most of the transformation
that maps from topology I to topology II. It was simply the similarity trans-
formation that diagonalizes QCC . Kienker showed that it is possible to find
transformations between model topologies such that two different topologies
with appropriately chosen rates have identical dwell-time distributions [7].
The transformations that accomplish this task are similarity transformations
which map the transition matrices and entry probabilities between different
topologies provided the topologies have the same number of open and closed
states.

3.1 Kienker Transformations

Kienker showed that any two models with generator matrices, Q and Q̃
with the same number of open and closed states, that satisfy some mild
technical conditions will yield the same distribution functions if and only if
there exist similarity transformations, S between Q and Q̃. The similarity
transformation S has the following form:

S =

(
SOO 0
0 SCC

)
(45)

and
Su = u (46)

with u a column vector containing all ones, as usual. The parts of the
generator matrices transform according to:

Q̃OO = S−1
OOQOOSOO Q̃OC = S−1

OOQOCSCC

Q̃CO = S−1
CCQCOSOO Q̃CC = S−1

CCQCOSOO

(47)
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and the initial distributions transform according to:

p̃Oo = pOoSOO p̃Co = pCoSCC (48)

In the next subsection we introduce the multi-time distribution functions. It
is easy to check that they are invariant under these transformations.

3.2 The Multi-time Distribution functions

There is an infinite hierarchy of multi-dimensional distribution functions for
the densities of being open for a time tO1 then closed for a time tC1 open for
a time tO2, closed for a time tC2, open closed, etc.. These are denoted fCO,
fOC , fOCO, fCOC , etc.

fO(tO) = pOo exp(QOOtO)QOCuC

fC(tC) = pCo exp(QCCtC)QCOuO

fOC(tO, tC) = pOo exp(QOOtO)QOC exp(QCCtC)QCOuO

fCO(tO, tC) = pCo exp(QCCtC)QCO exp(QOOtO)QOCuC (49)

fOCO(tO1, tC1, tO2) = pOo exp(QOOtO1)QOC exp(QCCtC1)QCO exp(QOOtO2)QOCuC

fCOC(tC1, tO1, tC2) = pCo exp(QCCtC1)QCO exp(QOOtO1)QOC exp(QCCtC1)QCOuO

...

These distribution functions are sums of decaying exponentials and can be
written:

fO(tO) =

NO∑
i=1

αi exp(−λitO)

fC(tC) =

NC∑
i=1

βi exp(−ωitO)

fOC(tO, tC) =

NO∑
i=1

NC∑
j=1

Aij exp(−λitO − ωjtC)

fCO(tO, tC) =

NO∑
i=1

NC∑
j=1

Bji exp(−λitO − ωjtC) (50)

...
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where the λi > 0 and ωi > 0 are the open and closed time decay rates
respectively. We define row vector α with components, αi, i = 1, 2, . . . NO,
and β with components βi, i = 1, 2, . . . NC . A and B can be written as
NO×NC and NC×NO matrices respectively. It will prove convenient to define
diagonal matrices containing the open time decays Λii = λi and Ωjj = ωj.
Note that exp(−Λt) is a diagonal matrix with exp(−Λt)jj = exp(−λjt). The
distributions can be compactly written

fO(tO) = α exp(−ΛtO)uO

fC(tC) = β exp(−ΩtC)uC

fOC(tO, tC) = uT
O exp(−ΛtO)A exp(−ΩtC)uC

fCO(tO, tC) = uT
C exp(−ΩtC)B exp(−ΛtO)uO (51)

...

Distribution functions written as explicit sums of decaying exponentials
have a direct interpretation in terms of a specific transition diagram known
as the uncoupled model or BKU form (for Bauer-Kienker-Uncoupled) Form.
In BKU form every open state is linked to every closed state (and vice versa)
but no closed state is linked to any other closed state, and no open state
is linked to any other open state. Topology II in Eq( 44) is an example of
BKU form in the case that there are two closed states and a single open
state. Provided the open and closed time decays are nondegenerate, there
is a unique similarity transformation that maps any model into uncoupled
form. It is simply the transformation that diagonalizes QCC and QOO. NB:
There is no guarantee that the transformations that do this will preserve
positivity of rates. i.e. some of the rates in Q̃OC and Q̃CO might be negative.
We’ll discuss this more later.

fO(tO) = uT
OΠunc

O Λ exp(−ΛtO)uO

fC(tC) = uT
CΠunc

C Ω exp(−ΩtC)uC

fOC(tO, tC) = uT
O exp(−ΛtO)Πunc

O Q̃OCΩ exp(ΩtC)uC

fCO(tO, tC) = uT
C exp(−ΩtC)Πunc

C Q̃COΛ exp(ΛtO)uO

fOCO(tO1, tC1, tO2) = uT
O exp(−ΛtO1)Π

unc
O Q̃OC exp(ΩtC1)Q̃CO exp(ΛtO2)ΛuO

fCOC(tC1, tO1, tC2) = uT
C exp(−ΩtC1)Π

unc
C Q̃CO exp(ΛtO1)Q̃OC exp(ΩtC2)ΩuC

... (52)
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[4, 6, 10, 7]
The topology that the sums of decaying exponentials correspond to is

known as the “uncoupled” topology or what we called “Bauer-Kienker” un-
coupled form (BKU form)[8]. BKU form corresponds to every open state
being linked to every closed state and vice versa, with no links between open
states and no links between closed states. We showed previously that there
is a unique (up to permutations of the labels) BKU form representation for
every model except those which have multiple equal decays, (i.e. equal λOis).
Applying the Kienker transformations to uncoupled form results in:

Qunc
OO = −ΛOO = S−1

O QOOSO (53)

Qunc
CC = −ΛCC = S−1

C QCCSC (54)

Qunc
OC = S−1

O QOCSC (55)

Qunc
CO = S−1

C QCOSO (56)

punc
Oo = pOoSO (57)

punc
Co = pCoSC (58)

uO = SOuO (59)

uC = SCuC (60)

(61)

where SO and SC are the matrices containing the right eigenvectors of QOO

and QCC respectively. The matrices −ΛOO and −ΛCC are diagonal and
contain the open and closed decay times respectively.

We introduce the “diag” operator which is equivalent to the diag operator
in Octave or Matlab. It maps a vector x into a diagonal matrix diag(x) via
diag(x)ii = xi. Before writing the dwell time distributions in this form, we
introduce two diagonal matrices that are contructed from the initial proba-
bility vectors:

Πunc
O = diag(punc

Oo ) (62)

Πunc
C = diag(punc

Co ) (63)

and apply the transformation rules (Equations 56) to the distributions as
written in Eq( 49). For example we have

fO(tO) = −pOoSOS−1
O exp(QOOtO)SOS−1

O QOOSOS−1
O uO = uT

OΠunc
O exp(−ΛtO)ΛuO
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finally we write the distribution functions

fO(tO) = uT
OΠunc

O exp(−ΛtO)ΛuO

fC(tC) = uT
CΠunc

C exp(−ΩtC)ΩuC

fOC(tO, tC) = uT
OΠunc

O exp(−ΛtO)Q̃OC exp(ΩtC)ΩuC

fCO(tO, tC) = uT
CΠunc

C exp(−ΩtC)Q̃CO exp(ΛtO)ΛuO

fOCO(tO1, tC1, tO2) = uT
OΠunc

O exp(−ΛtO1)Q̃OC exp(ΩtC1)Q̃CO exp(ΛtO2)ΛuO

fCOC(tC1, tO1, tC2) = uT
CΠunc

C exp(−ΩtC1)Q̃CO exp(ΛtO1)Q̃OC exp(ΩtC2)ΩuC

... (64)

Note that the matrices Πunc
C , Πunc

O , Λ, and Ω, are diagonal while Q̃OC and

Q̃OC are not diagonal (or necessarily even square). Although matrices do
not generally commute diagonal matrices do. (i.e. in general AB 6= BA
for matrices A and B but if both A and B are diagonal then AB = BA.
Consequently we can write Eqs( 64) as

4 Detailed Balance

At thermodynamic equilibrium all reactions must balance. This condition
is known as detailed balance. Ion channel gating kinetics are generally be-
lieved to obey detailed balance. Detailed balancing of reactions imposes
constraints on reaction rates. These constraints have manifestations that are
relevant to data-driven model reconstruction. We show here that at equi-
librium, the coefficients of the decaying exponentials in the one dimensional
dwell-time distributions are all positive (providing DB holds). We also show
that fAB(tA, tB) = fBA(tA, tB) providing DB holds. If the steady state cor-
responds to thermodynamic equilibrium it follows that

wiQij = wjQji . (65)

(Remember that w is the vector of equilibrium probabilities: wQ = 0. After
defining the diagonal matrix W , Wii = wi

Wij = 0 if i 6= j

Wii = wi

Note that
w = uT W (66)
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Eq(65) can be written

WQ = (WQ)T = QT W (67)

where T denotes the tranpose QT
ij = Qji. From Eq( 67) we find

W 1/2QW−1/2 = W−1/2QT W 1/2 = (W 1/2QW−1/2)T (68)

which means that Q is similar to a symmetric matrix, Qsym = W 1/2QW−1/2.
Detailed balance imposes constraints on reaction rates in networks that

that contain closed loops. However, it is not necessary to consider loops in
constructing the generator matrix. The detailed balance condition implies
that the matrix WQ is symmetric. This matrix has a clear physical meaning
and we give it a name: Qflux:

Qflux ≡ WQ (69)

because it is the matrix of probability fluxes between the various states. That
is Qflux

ij is the equilibrium probability flux from state i to state j. Note that

Qflux is a symmetric generator so that Qfluxu = 0 and uT Qflux = 0.

4.1 Proof that fAB = fBA when detailed balance holds.

We want to show that

fAB(tA, tB) =
1

J
wBQBAexp(QAAtA)QABexp(QBBtB)QBAuA (70)

fBA(tA, tB) =
1

J
wAQABexp(QBBtB)QBAexp(QAAtA)QABuB (71)

are equal provided detailed balance holds. To show that fAB(tA, tB) =
fBA(tA, tB) when detailed balance holds we take the transpose of Eq 71 and
then apply the detailed balance conditions for the aggregates:(

WAQAA WAQAB

WBQBA WBQBB

)
=

(
QT

AAWA QT
BAWB

QT
ABWA QT

BBWB

)
. (72)

Note that the distribution functions are scalar quantities. Taking the trans-
pose of a scalar has no effect; the transpose of a scalar is just the scalar so
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that fT
BA = fBA. Thus we have

fBA =
1

J
uT

AWAQAB exp (QBBtB)QBA exp (QAAtA)QABuB

=
1

J
uT

BQT
AB exp (QAAtA)T QT

BA exp (QBBtB)T QT
ABWAuA

=
1

J
uT

BQT
AB exp (QAAtA)T QT

BA exp (QBBtB)T WBQBAuA

=
1

J
uT

BQT
ABWAW−1

A exp (QAAtA)T WAW−1
A QT

BAWBW−1
B exp (QBBtB)T WBQBAuA

=
1

J
uT

BWBQBAW−1
A exp (QAAtA)T WAQABW−1

B exp (QBBtB)T WBQBAuA

=
1

J
uT

BWBQBA exp (QAAtA)QAB exp (QBBtB)QBAuA

=
1

J
wBQBA exp (QAAtA)QAB exp (QBBtB)QBAuA

= fAB (73)

4.2 Proof that the coefficients of the decaying expo-
nentials in the 1-dimensional equilibrium dwell-
time distributions are all positive when detailed
balance holds.

What we’re going to do is show that the equilibrium one-dimensional dwell-
time distribution can be written as xT exp(−Λt)x where Λ is the diagonal
matrix containing the eigenvalues of QAA. We begin by writing fA in of the
standard forms:

fA(t) =
1

J
wAQAA exp(QAAt)QAAuA

=
1

J
uT

AWAQAA exp(QAAt)QAAuA

=
1

J
uT

AQT
AAWA exp(QAAt)QAAuA

It is easy to show that WA exp (QAAt) = W
1/2
A S exp(−Λt)ST W

1/2
A where S is

the matrix of eigenvectors of the symmetric matrix W 1/2QAAW−1/2. Since
W 1/2QAAW−1/2 is symmetric it’s eigenvectors form an orthnormal set so with
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appropriate normalization SST = I. The diagonal matrix −Λ contains the
eigenvalues of QAA. Thus we find that

fA =
1

J
uT

AQT
AAW

1/2
A S exp(−Λt)ST W

1/2
A QAAuA

=
1

J

∑
i

exp(−λit)x
2
i (74)

where x = ST W
1/2
A QAAuA so that the amplitudes of exp(−λit) are x2

i /J > 0
as was to be shown.

References

[1] COLQUHOUN, D & HAWKES, A. G. (1977) PROCEEDINGS OF
THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCI-
ENCES 199, 231 – 262.

[2] Colquhoun, D & Hawkes, A. G. (1981) Philos Trans R Soc Lond B Biol
Sci 211, 205 – 236.

[3] Colquhoun, D & Hawkes, A. G. (1982) Philos Trans R Soc Lond B Biol
Sci 300, 1 – 59.

[4] Fredkin, D. R, Montal, M, & Rice, J. A. (1985) Identification of aggre-
gated Markovian models: application to the nicotinic acetycholine recep-
tor. eds. Le Cam, L. M & Olshen, R. A. (Wadsworth Press, Belmont),
pp. 269 – 289.

[5] Kijima, S & Kijima, H. (1987) Journal of Theoretical Biology 128, 423
– 434.

[6] Fredkin, D. R & Rice, J. A. (1986) J App Prob 23, 208 – 214.

[7] Kienker, P. (1989) Philos Trans R Soc Lond B Biol Sci 236, 269–309.

[8] Bruno, W. J, Yang, J, & Pearson, J. E. (2005) Proceedings of the Na-
tional Academy of Sciences of the United States of America 102, 6326
– 31.

[9] Lu, H. P, Xun, L. Y, & Xie, X. S. (1998) Science 282, 1877 – 1881.

19



[10] Bauer, R. J, Bowman, B. F, & Kenyon, J. L. (1987) Biophys J 52, 961
– 78.

20


